Adenovirus-mediated gene transfer of VEGF(121) improves lower-extremity endothelial function and flow reserve.
نویسندگان
چکیده
BACKGROUND Vascular endothelial growth factor (VEGF) currently is being evaluated in clinical angiogenesis trials involving patients with peripheral arterial disease. We hypothesized that delivery of VEGF to the skeletal muscle of the lower extremity using an adenoviral vector (Ad(GV)VEGF(121.10)) would improve peripheral endothelial function. Accordingly, we investigated lower-extremity endothelial function in patients enrolled in a Phase I adenovirus-mediated gene delivery trial of VEGF(121.10). METHODS AND RESULTS Blood flow to the index extremity was measured by thermodilution at baseline and 30 days after administration of Ad(GV)VEGF(121.10), in response to the infusion of endothelium-dependent and -independent agonists (acetylcholine and nitroglycerin, respectively) into the ipsilateral femoral artery. There was no difference in basal flow before or after treatment with Ad(GV)VEGF(121.10). In response to acetylcholine (150 microg/min and 300 microg/min), there was a 0.9-fold (0.33+/-0.03 to 0.32+/-0.03 L/min) and 1.2-fold (0.33+/-0.03 to 0.490+/-0.02 L/min) change in flow before Ad(GV)VEGF(121.10) treatment. After Ad(GV)VEGF(121.10) treatment, flow increased 2.4-fold (0.310+/-0.04 to 0.730+/-0.10 L/min) and 2.3-fold (0.31+/-0.04 to 0.7+/-0.08 L/min), respectively (P<0.05 before Ad(GV)VEGF(121.10) treatment versus after Ad(GV)VEGF(121.10) for both doses). Infusion of nitroglycerin resulted in a 1.8-fold increase in flow before Ad(GV)VEGF(121.10) (0.33+/-0.03 to 0.58+/-0.06 L/min) compared with a 2.4-fold increase (0.31+/-0.04 to 0.73+/-0.09 L/min) after Ad(GV)VEGF(121.10) (P=NS before Ad(GV)VEGF(121.10) versus after Ad(GV)VEGF(121.10)). Lower-extremity flow reserve increased in all patients in response to at least 1 dose of acetylcholine. Peak walking times increased concomitant with improvement in endothelial function. CONCLUSIONS Adenoviral gene transfer of VEGF(121.10) appears to modulate endothelial function and lower-extremity flow reserve in patients with peripheral arterial disease.
منابع مشابه
Adenovirus-mediated VEGF(121) gene transfer stimulates angiogenesis in normoperfused skeletal muscle and preserves tissue perfusion after induction of ischemia.
BACKGROUND Administration of angiogenic factors stimulates neovascularization in ischemic tissues. However, there is no evidence that angiogenesis can be induced in normoperfused skeletal muscles. We tested the hypothesis that adenovirus-mediated intramuscular (IM) gene transfer of the 121-amino-acid form of vascular endothelial growth factor (AdCMV.VEGF(121)) could stimulate neovascularization...
متن کاملIntravascular adenovirus-mediated VEGF-C gene transfer reduces neointima formation in balloon-denuded rabbit aorta.
BACKGROUND Gene transfer to the vessel wall may provide new possibilities for the treatment of vascular disorders, such as postangioplasty restenosis. In this study, we analyzed the effects of adenovirus-mediated vascular endothelial growth factor (VEGF)-C gene transfer on neointima formation after endothelial denudation in rabbits. For comparison, a second group was treated with VEGF-A adenovi...
متن کاملEndothelial progenitor cell vascular endothelial growth factor gene transfer for vascular regeneration.
BACKGROUND Previous studies have established that bone marrow-derived endothelial progenitor cells (EPCs) are present in the systemic circulation. In the current study, we investigated the hypothesis that gene transfer can be used to achieve phenotypic modulation of EPCs. METHODS AND RESULTS In vitro, ex vivo murine vascular endothelial growth factor (VEGF) 164 gene transfer augmented EPC pro...
متن کاملEfficient regulation of VEGF expression by promoter-targeted lentiviral shRNAs based on epigenetic mechanism: a novel example of epigenetherapy.
RATIONALE We studied a possibility that shRNAs can lead to transcriptional gene activation at the promoter level via epigenetic mechanism. OBJECTIVE The purpose of this study was to test the effects on vascular endothelial growth factor (VEGF-A) expression by promoter targeted small hairpin RNAs (shRNAs) in vitro and in experimental animals in vivo using stable local lentiviral gene transfer....
متن کاملVascular endothelial growth factor gene therapy increases survival, promotes lung angiogenesis, and prevents alveolar damage in hyperoxia-induced lung injury: evidence that angiogenesis participates in alveolarization.
BACKGROUND Bronchopulmonary dysplasia (BPD) and pulmonary emphysema, both significant global health problems, are characterized by a loss of alveoli. Vascular endothelial growth factor (VEGF) is a trophic factor required for endothelial cell survival and is abundantly expressed in the lung. METHODS AND RESULTS We report that VEGF blockade decreases lung VEGF and VEGF receptor 2 (VEGFR-2) expr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation
دوره 104 7 شماره
صفحات -
تاریخ انتشار 2001